JOURNAL OF APPROXIMATION THEORY 23, 65-69 (1978)

On Multivariate Polynomials of Least Deviation from Zero on the Unit Cube

MANFRED REIMER

Abteilung Mathematik, Universität Dortmund, Postfach 500500, D 4600 Dortmund 50, West Germany

Communicated by G. Meinardus

Received October 5, 1976

In the family of all *r*-variable real polynomials with total degree not exceeding μ and with maximum norm on the unit-cube not exceeding 1, any of the leading coefficients is maximum for a special product of one-variable Chebyshev polynomials of the first kind. This is a consequence of an even more general result on polynomials of least deviation from zero on the unit cube.

1. INTRODUCTION

We deal with polynomials

$$P(x) = \sum c_n x^n, \qquad c_n \in \mathbb{R}, \tag{1.1}$$

in r variables $(x_1, ..., x_r) = x \in \mathbb{R}^r$, $r \in \mathbb{N}$. Here we put

$$x^n = x_1^{n_1} \cdots x_r^{n_r}$$
 for $n = (n_1, ..., n_r) \in \mathbb{N}_0^r$.

Although our particular concern are the real polynomial spaces

$$\mathbb{P}_{\mu}^{r} := \operatorname{span}\{x^{n} \colon |n| \leq \mu\},$$

where $\mu \in \mathbb{N}_0$, $|n| = n_1 + \cdots + n_r$ for $n \in \mathbb{N}_0^r$, we shall use even the more sophisticated real spaces

$$\prod_{m} r := \operatorname{span}\{x^n : |n| \leq |m| \text{ or } n_i < m_i \text{ for one } i\}$$

for $m \in \mathbb{N}_0^r$.

With T_{ν} denoting the common Chebyshev polynomial with degree ν of the first kind we can introduce

$$T_m(x) := T_{m_1}(x_1) \cdots T_{m_r}(x_r)$$

MANFRED REIMER

for $m \in \mathbb{N}_0^r$ as its *r*-variable generalization of degree *m*. Note that

$$T_m(x) = c_m * x^m + \text{lower degree terms},$$
 (1.2)

where

$$c_m^* = 2^{|m|-r}$$
 for $m > 0$ (1.3)

(i.e., $m_i > 0$ for all *i*).

It is well known that, with respect to

$$|| P || := \max\{| P(x)| : x \in C^r\},\ C^r := [-1, 1]^r, \text{ unit cube},$$

the polynomial T_m is extremal in some sense within the space

$$\mathbb{P}_m^r := \operatorname{span} \{ x^n : n \leqslant m \}.$$

See Ehlich and Zeller [2], Sloss [4] (subspace). We are going to generalize these results for $\mathbb{P}_{\mu}{}^{r}$ and even for $\Pi_{m}{}^{r}$. Note that $||T_{m}|| = 1$ and that

$$T_m \in \mathbb{P}_m^r \subset \mathbb{P}_\mu^r \subset \Pi_m^r \quad \text{for} \quad |m| = \mu.$$
(1.4)

Using divided difference methods, we shall prove the following theorems:

THEOREM 1. Let $m \in \mathbb{N}_0^r$ be fixed. Among all $P \in \Pi_m^r$ with the pivot coefficient $c_m = c_m^*$, the polynomial $P = T_m$ minimizes the maximum norm on the unit cube C^r .

THEOREM 2. Let $m \in \mathbb{N}_0^r$ be fixed. Among all $P \in \prod_m r$ with maximum norm on the unit cube C^r not exceeding one, the polynomial $P = T_m$ maximizes the pivot coefficient c_m in absolute value.

We note that, by (1.4), the two theorems remain valid if Π_m^r is replaced either by \mathbb{P}_{μ}^r , $|m| = \mu$, or by \mathbb{P}_m^r .

We discuss the problem of uniqueness in Section 3. Here we should point out, however, that Theorem 2 with $\mathbb{P}_{\mu}{}^{r}$ instead of $\Pi_{m}{}^{r}$ reads more detailed as

COROLLARY 3. Let $P(x) = \sum_{|m| \leq \mu} c_m x^m$, $||P|| \leq 1$. Then $|c_m| \leq c_m^*$ for $|m| = \mu$.

We consider it a remarkable fact that, apart from the few cases where $m_i = 0$ for one *i*, all the leading coefficients c_m , $|m| = \mu$, have the same upper bound $2^{\mu-r}$ in absolute value though this bound is attained for different polynomials, compare (1.3).

2. PROOFS

Let $m \in \mathbb{N}_0^r$ be fixed and let $\tilde{\Pi}_m^r$ denote the subspace of Π_m^r where $c_m = 0$. Define

$$\Xi_{\nu} := \{\xi_0^{(\nu)}, ..., \xi_{\nu}^{(\nu)}\}$$

for $\nu \in \mathbb{N}$ to be the set of all critical points of T_{ν} on the interval [-1, 1] (see Rivlin [3]) and for $\nu = 0$ by $\xi_0^{(0)} := 0$, where these points are assumed to be ordered as follows:

$$\xi_0^{(
u)} < \xi_1^{(
u)} < \cdots < \xi_{
u}^{(
u)}.$$

Now define

$$arepsilon_m:=arepsilon_{m_1} imesarepsilon_{m_2} imes\cdots imesarepsilon_{m_n}$$

for $m \in \mathbb{N}_0^r$. Note that Ξ_m is a subset of all critical points of T_m on the unit cube C^r and that, for

$$\tau_n = (\xi_{n_1}^{(m_1)}, \dots, \xi_{n_r}^{(m_r)}) \in \Xi_m$$
(2.1)

we have

$$T_m(\tau_n) = (-1)^{|m| + |n|}.$$
(2.2)

Now, let $P \in \Pi_m^r$ be fixed. We are going to take divided differences from P which act on nodes belonging to Ξ_m only. As can be seen from its effect to monomials, the result of the following process is independent of the order in which the several divided-difference operators are applied. The process is this: For i = 1, 2, ..., r we apply the divided-difference operator with respect to the single variable x_i which belongs to Ξ_i as its system of nodes. The result of the whole process is a polynomial $[P]_m$. Note that among all the monomials x^n which span Π_m^r , there is only one for which $[x^n]_m$ is not vanishing. This is the monomial x^m where, by usual Newton-Horner arguments, we obtain

$$[x^m]_m =$$

1.

Hence we have

$$[P]_m = c_m \tag{2.3}$$

for any $P \in \prod_m r$, $m \in \mathbb{N}_0^r$.

On the other hand, it can easily be seen that, as a divided difference, $[P]_m$ has the representation

$$[P]_m = \sum_{\tau \in \Xi_m} \lambda(\tau) P(\tau), \qquad (2.4)$$

where for the τ_n of (2.1) we have

$$(-1)^{|m|+|n|} \lambda(\tau_n) > 0$$

This together with (2.2) yields

$$T_m(\tau) \lambda(\tau) > 0$$
 for all $\tau \in \Xi_m$. (2.5)

Now we can make the following statements. If we define

$$\sum : \Xi_m \to \{-1, +1\}$$

by $\sum (\tau) = \operatorname{sgn} \lambda(\tau)$, then \sum is an extremal signature for $\tilde{\Pi}_m^r$ in the sense of Rivlin [3]. This follows from the fact that the right-hand side of (2.4) vanishes for all $P \in \tilde{\Pi}_m^r$, which is a consequence of (2.3). On the other hand, we learn by (2.5) that \sum is associated with T_m . Hence, by Rivlin [3, Theorem 2.6], it follows that zero is a best approximation to T_m in $\tilde{\Pi}_m^r$ with respect to the maximum norm on the unit cube. This statement is equivalent to the assertion of Theorem 1.

For Theorem 2, assume $P \in \Pi_m^r$, $||P|| \leq 1$. If $c_m = 0$, nothing needs to be proved. Now let $c_m \neq 0$. Define

$$\tilde{P}:=(c_m^*/c_m)P-T_m.$$

Then $\tilde{P} \in \tilde{\Pi}_m^r$, hence by Theorem 1

$$|c_m^*/c_m| \ge |c_m^*/c_m| \cdot ||P|| = ||T_m + \tilde{P}|| \ge ||T_m|| = 1,$$

and Theorem 2 is proved.

3. UNIQUENESS

Due to an example of Buck [1], neither in Theorem 1 nor in Theorem 2 can we obtain uniqueness in the general case. This is true even, if we restrict ourselves to $\mathbb{P}_{\mu}{}^{r}$, $\mu = |m|$, instead of $\Pi_{m}{}^{r}$.

In order to find conditions where uniqueness holds, assume again $P \in \Pi_m^r$ to be any polynomials with pivot $c_m = c_m^*$. Then

$$\tilde{P} := T_m - P \in \tilde{\Pi}_m^r.$$

Now assume

$$\|P\| = \|T_m\|.$$

Then

$$T_m(\tau) \, \tilde{P}(\tau) \geqslant 0$$
 for all $\tau \in \Xi_m$.

Besides, for \tilde{P} we can write (2.4) as

$$0 = \sum_{ au \in arepsilon_m} \mid \lambda(au) \mid T_m(au) \; ilde{P}(au)$$

because of (2.5). Together this yields

$$\tilde{P}(\tau) = 0$$
 for all $\tau \in \Xi_m$. (3.1)

Now, uniqueness of the solution of the extreme value problem of Theorem 1 would follow, if we could conclude from (3.1) that \tilde{P} is the null polynomial. This is impossible in the general case where $P \in \Pi_m^r$ and even in the case where $P \in \mathbb{P}_{\mu}^r$, $\mu = |m|$, as the example of Buck tells us, but possible, if we deal with \mathbb{P}_m^r instead of Π_m^r . This result has been found already by Ehlich and Zeller [2].

References

- 1. R. C. BUCK, Linear spaces and approximation theory, in "On Numerical Approximation (R. F. Langer, Ed.), Univ. of Wisconsin Press, Madison, 1959.
- 2. H. EHLICH AND K. ZELLER, Čebyšev-Polynome in mehreren Veränderlichen, *Math. Z.* 93 (1966), 142–143.
- 3. TH. J. RIVLIN, "The Chebyshev Polynomials," Wiley, New York, 1974.
- 4. J. M. SLOSS, Chebyshev approximation to zero, Pacific J. Math. 15 (1965), 305-313.