On Multivariate Polynomials of Least Deviation from Zero on the Unit Cube

Manfred Reimer
Abteilung Mathematik, Universität Dortmund, Postfach 500500, D 4600 Dortmund 50, West Germany

Communicated by G. Meinardus

Received October 5, 1976

In the family of all r-variable real polynomials with total degree not exceeding μ and with maximum norm on the unit-cube not exceeding 1 , any of the leading coefficients is maximum for a special product of one-variable Chebyshev polynomials of the first kind. This is a consequence of an even more general result on polynomials of least deviation from zero on the unit cube.

1. Introduction

We deal with polynomials

$$
\begin{equation*}
P(x)=\sum c_{n} x^{n}, \quad c_{n} \in \mathbb{R} \tag{1.1}
\end{equation*}
$$

in r variables $\left(x_{1}, \ldots, x_{r}\right)=x \in \mathbb{R}^{r}, r \in \mathbb{N}$. Here we put

$$
x^{n}=x_{1}^{n_{1}} \cdots x_{r}^{n_{r}} \quad \text { for } \quad n=\left(n_{1}, \ldots, n_{r}\right) \in \mathbb{N}_{0}^{r} .
$$

Although our particular concern are the real polynomial spaces

$$
\mathbb{P}_{\mu}^{r}:=\operatorname{span}\left\{x^{n}:|n| \leqslant \mu\right\},
$$

where $\mu \in \mathbb{N}_{0},|n|=n_{\mathbf{1}}+\cdots+n_{r}$ for $n \in \mathbb{N}_{0}{ }^{r}$, we shall use even the more sophisticated real spaces

$$
\Pi_{m}^{r}:=\operatorname{span}\left\{x^{n}:|n| \leqslant|m| \text { or } n_{i}<m_{i} \text { for one } i\right\}
$$

for $m \in \mathbb{N}_{0}{ }^{r}$.
With T_{v} denoting the common Chebyshev polynomial with degree ν of the first kind we can introduce

$$
T_{m}(x):=T_{m_{1}}\left(x_{1}\right) \cdots T_{m_{r}}\left(x_{r}\right)
$$

for $m \in \mathbb{N}_{0}{ }^{r}$ as its r-variable generalization of degree m. Note that

$$
\begin{equation*}
T_{m}(x)=c_{m}^{*} x^{m}+\text { lower degree terms } \tag{1.2}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{m}^{*}=2^{|m|-r} \quad \text { for } \quad m>0 \tag{1.3}
\end{equation*}
$$

(i.e., $m_{i}>0$ for all i).

It is well known that, with respect to

$$
\begin{aligned}
\|P\| & :=\max \left\{|P(x)|: x \in C^{r}\right\} \\
C^{r} & :=[-1,1]^{r}, \quad \text { unit cube },
\end{aligned}
$$

the polynomial T_{m} is extremal in some sense within the space

$$
\mathbb{P}_{m}{ }^{r}:=\operatorname{span}\left\{x^{n}: n \leqslant m\right\} .
$$

See Ehlich and Zeller [2], Sloss [4] (subspace). We are going to generalize these results for $\mathbb{P}_{\mu}{ }^{r}$ and even for $\Pi_{m}{ }^{r}$. Note that $\left\|T_{m}\right\|=1$ and that

$$
\begin{equation*}
T_{m} \in \mathbb{P}_{m}^{r} \subset \mathbb{P}_{\mu}^{r} \subset \Pi_{m}^{r} \quad \text { for } \quad|m|=\mu \tag{1.4}
\end{equation*}
$$

Using divided difference methods, we shall prove the following theorems:
Theorem 1. Let $m \in \mathbb{N}_{0}{ }^{r}$ be fixed. Among all $P \in \Pi_{m}{ }^{r}$ with the pivot coefficient $c_{m}=c_{m}{ }^{*}$, the polynomial $P=T_{m}$ minimizes the maximum norm on the unit cube C^{r}.

Theorem 2. Let $m \in \mathbb{N}_{0}{ }^{r}$ be fixed. Among all $P \in \Pi_{m}{ }^{r}$ with maximum norm on the unit cube C^{r} not exceeding one, the polynomial $P=T_{m}$ maximizes the pivot coefficient c_{m} in absolute value.

We note that, by (1.4), the two theorems remain valid if $\Pi_{m}{ }^{r}$ is replaced either by $\mathbb{P}_{\mu}{ }^{r},|m|=\mu$, or by $\mathbb{P}_{m}{ }^{r}$.

We discuss the problem of uniqueness in Section 3. Here we should point out, however, that Theorem 2 with $\mathbb{P}_{\mu}{ }^{r}$ instead of $\Pi_{m}{ }^{r}$ reads more detailed as

Corollary 3. Let $P(x)=\sum_{m \mid \leqslant \mu} c_{m} x^{m}, \quad\|P\| \leqslant 1$. Then $\left|c_{m}\right| \leqslant c_{m}{ }^{*}$ for $|m|=\mu$.

We consider it a remarkable fact that, apart from the few cases where $m_{i}=0$ for one i, all the leading coefficients $c_{m},|m|=\mu$, have the same upper bound 2^{u-r} in absolute value though this bound is attained for different polynomials, compare (1.3).

2. Proofs

Let $m \in \mathbb{N}_{0}{ }^{r}$ be fixed and let $\Pi_{m}{ }^{r}$ denote the subspace of $\Pi_{m}{ }^{r}$ where $c_{m}=0$. Define

$$
\Xi_{v}:=\left\{\xi_{0}^{(v)}, \ldots, \xi_{v}^{(\nu)}\right\}
$$

for $\nu \in \mathbb{N}$ to be the set of all critical points of T_{v} on the interval $[-1,1]$ (see Rivlin [3]) and for $\nu=0$ by $\xi_{0}^{(0)}:=0$, where these points are assumed to be ordered as follows:

$$
\xi_{0}^{(\nu)}<\xi_{1}^{(\nu)}<\cdots<\xi_{\nu}^{(\nu)}
$$

Now define

$$
\Xi_{m}:=\Xi_{m_{1}} \times \Xi_{m_{2}} \times \cdots \times \Xi_{m_{r}}
$$

for $m \in \mathbb{N}_{0}{ }^{r}$. Note that Ξ_{m} is a subset of all critical points of T_{m} on the unit cube C^{r} and that, for

$$
\begin{equation*}
\tau_{n}=\left(\xi_{n_{1}}^{\left(m_{1}\right)}, \ldots, \xi_{n_{r}}^{\left(m_{r}\right)}\right) \in \Xi_{m} \tag{2.1}
\end{equation*}
$$

we have

$$
\begin{equation*}
T_{m}\left(\tau_{n}\right)=(-1)^{|m|+|n|} \tag{2.2}
\end{equation*}
$$

Now, let $P \in I_{m}{ }^{r}$ be fixed. We are going to take divided differences from P which act on nodes belonging to Ξ_{m} only. As can be seen from its effect to monomials, the result of the following process is independent of the order in which the several divided-difference operators are applied. The process is this: For $i=1,2, \ldots, r$ we apply the divided-difference operator with respect to the single variable x_{i} which belongs to Ξ_{i} as its system of nodes. The result of the whole process is a polynomial $[P]_{m}$. Note that among all the monomials x^{n} which span $\Pi_{m}{ }^{r}$, there is only one for which $\left[x^{n}\right]_{m}$ is not vanishing. This is the monomial x^{m} where, by usual Newton-Horner arguments, we obtain

$$
\left[x^{m}\right]_{m}=1
$$

Hence we have

$$
\begin{equation*}
[P]_{m}=c_{m} \tag{2.3}
\end{equation*}
$$

for any $P \in \Pi_{m}{ }^{r}, m \in \mathbb{N}_{0}{ }^{r}$.
On the other hand, it can easily be seen that, as a divided difference, $[P]_{m}$ has the representation

$$
\begin{equation*}
[P]_{m}=\sum_{\tau \in \Xi_{m}} \lambda(\tau) P(\tau) \tag{2.4}
\end{equation*}
$$

where for the τ_{n} of (2.1) we have

$$
(-1)^{|m|+|n|} \lambda\left(\tau_{n}\right)>0
$$

This together with (2.2) yields

$$
\begin{equation*}
T_{m}(\tau) \lambda(\tau)>0 \quad \text { for all } \tau \in \Xi_{m} \tag{2.5}
\end{equation*}
$$

Now we can make the following statements. If we define

$$
\sum: \Xi_{m} \rightarrow\{-1,+1\}
$$

by $\sum(\tau)=\operatorname{sgn} \lambda(\tau)$, then \sum is an extremal signature for $\tilde{\Pi}_{m}{ }^{r}$ in the sense of Rivlin [3]. This follows from the fact that the right-hand side of (2.4) vanishes for all $P \in \bar{\Pi}_{m}{ }^{r}$, which is a consequence of (2.3). On the other hand, we learn by (2.5) that Σ is associated with T_{m}. Hence, by Rivlin [3, Theorem 2.6], it follows that zero is a best approximation to T_{m} in $\tilde{\Pi}_{m}{ }^{r}$ with respect to the maximum norm on the unit cube. This statement is equivalent to the assertion of Theorem 1.

For Theorem 2, assume $P \in \Pi_{m}{ }^{r},\|P\| \leqslant 1$. If $c_{m}=0$, nothing needs to be proved. Now let $c_{m} \neq 0$. Define

$$
\tilde{P}:=\left(c_{m}^{*} / c_{m}\right) P-T_{m}
$$

Then $\tilde{P} \in \tilde{\Pi}_{m}{ }^{r}$, hence by Theorem 1

$$
\left|c_{m}^{*} / c_{m}\right| \geqslant\left|c_{m}^{*} / c_{m}\right| \cdot\|P\|=\left\|T_{m}+\tilde{P}\right\| \geqslant\left\|T_{m}\right\|=1
$$

and Theorem 2 is proved.

3. Uniqueness

Due to an example of Buck [1], neither in Theorem 1 nor in Theorem 2 can we obtain uniqueness in the general case. This is true even, if we restrict ourselves to $\mathbb{P}_{\mu}{ }^{r}, \mu=|m|$, instead of $\Pi_{m}{ }^{r}$.

In order to find conditions where uniqueness holds, assume again $P \in \Pi_{m}{ }^{r}$ to be any polynomials with pivot $c_{m}=c_{m}{ }^{*}$. Then

$$
\tilde{P}:=T_{m}-P \in \tilde{\Pi}_{m}{ }^{\tau}
$$

Now assume

$$
\|\boldsymbol{P}\|=\left\|T_{m}\right\|
$$

Then

$$
T_{m}(\tau) \tilde{P}(\tau) \geqslant 0 \quad \text { for all } \tau \in \Xi_{m}
$$

Besides, for \tilde{P} we can write (2.4) as

$$
0=\sum_{\tau \in \Xi_{m}}|\lambda(\tau)| T_{m}(\tau) \tilde{P}(\tau)
$$

because of (2.5). Together this yields

$$
\begin{equation*}
\tilde{P}(\tau)=0 \quad \text { for all } \tau \in \Xi_{m} \tag{3.1}
\end{equation*}
$$

Now, uniqueness of the solution of the extreme value problem of Theorem 1 would follow, if we could conclude from (3.1) that \tilde{P} is the null polynomial. This is impossible in the general case where $P \in \Pi_{m}{ }^{r}$ and even in the case where $P \in \mathbb{P}_{\mu}{ }^{r}, \mu=|m|$, as the example of Buck tells us, but possible, if we deal with $\mathbb{P}_{m}{ }^{r}$ instead of $\Pi_{m}{ }^{r}$. This result has been found already by Ehlich and Zeller [2].

References

1. R. C. Buck, Linear spaces and approximation theory, in "On Numerical Approximation (R. F. Langer, Ed.), Univ. of Wisconsin Press, Madison, 1959.
2. H. Ehlich and K. Zeller, Čebyšev-Polynome in mehreren Veränderlichen, Math. Z. 93 (1966), 142-143.
3. Th. J. Rivlin, "The Chebyshev Polynomials," Wiley, New York, 1974.
4. J. M. Sloss, Chebyshev approximation to zero, Pacific J. Math. 15 (1965), 305-313.
